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In this paper we investigate the structure of a proximinal subspace G of C(Q) of
codimension n, in terms of the geometry of the range of the vector measure
&=(&1 , ..., &n), where [&1 , ..., &n] is a basis for the annihilator G=. In particular, we
prove that if & is non-atomic, G is proximinal iff for every P # Ext R(&) there exists
a clopen subset C of �n

i=1 S(&i) such that &(C)=P. � 1999 Academic Press

1. INTRODUCTION

Proximinal subspaces are pivotal for best approximation in normed
spaces. In addition to the general investigation of proximinality in any
normed space, as in [6, 8, 17�19], there exists a large literature concerning
proximinality in special cases, for instance, the case of L p spaces discussed
in [4, 9�11].

In [5] Franchetti investigated the relationship between proximinality
and the existence of minimal projections for finitely complemented sub-
spaces of a large class of Banach spaces.

In this paper we investigate finitely complemented proximinal subspaces
of C(Q), endowed with the usual supremum norm, with Q compact and
Hausdorff. In this case the proximinality of finitely complemented sub-
spaces has already been completely characterized by Garkavi (see the
monograph [16] ). A more recent characterization [20, Theorem 2] brings
into the picture the existence of continuous representatives of Radon�
Nikodym densities.

In this paper, using Garkavi's characterization and a Radon�Nikodym
Theorem due to Greco [7], we prove that proximinal finitely comple-
mented subspaces of C(Q) enjoy the following property: their annihilator is
actually a finite-dimensional subspace of C(Q) itself (Theorem 3.4).

Hence in C(Q) these subspaces are in a sense a surrogate of what hap-
pens in a real Hilbert space X, where X* can be identified with X itself.

It is natural to ask whether this property characterizes proximinal sub-
spaces among finitely complemented ones. We show that the answer is
negative. This in turn leads us to a characterization of proximinality for
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2-complemented subspaces G in the particular case when G= is generated
by two independent non-atomic, nonnegative measures &1 , &2 ; namely, G is
proximinal if and only if every extreme point of the fundamental zonoid
(namely the range of the measure (&1 , &2)) is the image under (&1 , &2) of a
clopen subset of S(&1) _ S(&2) (Theorem 4.1). The idea of disconnectedness
of the carrier in fact has already appeared in [15].

In a forthcoming paper [3] the authors obtain the same characterization
for any finitely complemented subspace whose annihilator is spanned by
n independent non-atomic measures and show that the non-atomicity
assumption cannot be dropped in this characterization.

2. PRELIMINARIES

Throughout this paper we will adopt the following symbols:

�� Q is a compact Hausdorff topological space;

�� BQ is the Borel _-algebra on Q;

�� E=C(Q) is the space of all continuous real valued fuctions on Q,
endowed with the usual supremum norm;

�� Q(2) is the set of dyadic rational numbers;

�� R(+) is the range of a measure + on BQ ;

�� �A is the boundary of a set A;

�� g$& (resp. g$+) is the left hand side (resp. right hand side) derivative
of a real function g.

For a closed subspace G of E and x # E we consider the set:

PG(x)=[g0 # G : &x& g0&=min
g # G

&x& g&].

Definition 2.1. If PG(x){< for each x # E"G, then G is called a
proximinal subspace of E.

The quotient space E�G is endowed with the norm &x+G&=
Inf[&x+ y& : y # G]. As usual the dimension of E�G is termed the codimen-
sion of G.

Definition 2.2. The set G==[ f # E* : f (g)=0, \g # G] is called the
annihilator of G.

Recall that, given a measure & on BQ , there exists a unique compact sub-
set S(&)/Q such that |&| (S(&))=|&| (Q) and |&| (H)<|&| (S(&)) for every
proper compact subset H/S(&). Hence for every nonempty open subset A
of S(&) we have &(A)>0. The set S(&) is called the carrier of &.
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By virtue of the canonical isometry between (E�G)* and G=, we have
dim(G=)=dim(E�G)*: thus if codim(G)=n, then dim(G=)=n. Hence
G==span[&1 , ..., &n], for some regular measures &1 , ..., &n on BQ .

The following result of Garkavi gives a characterization of the
proximinal subspaces of codimension n.

Theorem 2.1 [16]. Let G be a closed subspace of C(Q) of finite
codimension. Then G is proximinal if and only if the following conditions are
satisfied:

(2.1.a) For every & # G="[0] the carrier S(&) admits a Hahn decom-
position into two disjoint closed sets S(&)+, S(&)&=S(&)"S(&)+,

(2.1.b) For every pair of measures &, &� # G="[0] the set S(&� )"S(&) is
closed,

(2.1.c) For every pair of measures &, &� # G="[0], the measure & is
absolutely continuous with respect to &� on the set S(&� ).

3. FINITELY COMPLEMENTED PROXIMINAL
SUBSPACES OF C(Q)

Throughout this section G will denote a closed subspace of C(Q) of
codimension n; hence G==span[&1 , ..., &n]. By making use of Garkavi's
Theorem, we shall prove the following:

Theorem 3.1. Let +=|&1|+ } } } +|&n |. G is proximinal if and only if for
every & # G="[0] there exist f # C(S(+)) and g # C(S(&)) such that

|&|=| f d+, on BQ & S(+) (1)

+=| g d&, on BQ & S(&). (2)

Proof. In order to prove the ``only if '' part, we shall show that G=

satisfies the conditions of Theorem 2.1.
We begin by proving condition (2.1.a).
Observe first that from |&|=� fg d& in BQ & S(&) it follows

fg={1
&1

|&|-a.e. in S(&+)
|&|-a.e. in S(&&).
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The sets:

P(&)=[| # S(&) : ( fg)(|)=1]

Q(&)=[| # S(&) : ( fg)(|)=&1].

are closed, disjoint subsets of S(&) such that |&| (S(&+)"P(&))=0 and
|&|(S(&&)"Q(&))=0.

In fact, if it were |&| (S(&+)"P(&))>0, it would be fg=1 |&|-a.e.
on S(&+)"P(&), which contradicts the definition of P(&). Likewise
|&| (S(&&)"Q(&))=0. Therefore P(&) _ Q(&)=S(&) and for every A/P(&),
&(A)�0, while for every B/Q(&), &(B)�0; thus (P(&), Q(&)) is a Hahn
decomposition of S(&) into two closed disjoint sets.

To prove condition (2.1.b) let us consider &, &� # G="[0], and let
f, g, f� , g� be the corresponding continous densities of (1) and (2). We shall
prove that S(+)"S(&� )=[ f� =0]. Clearly [ f� =0]/S(+)"S(&� ). To prove the
converse inclusion assume that there exists | # S(+)"S(&� ) but | � [ f� =0];
then f� (|)=_ (w.l.o.g. we may suppose _>0).

Then from the continuity of f� on S(+), and being S(+)" S(&� ) an open
subset of S(+), there would exist a relative open neighbourhoood of |,
U/S(+)"S(&� ) such that f |U�_�2. This implies (_�2) +(U)��U f d+=
|&� | (U)=0, and hence we would have +(U)=0. Then U would be an open
nonempty subset of S(+) with +(U)=0, which is a contradiction. Hence by
the continuity of f� on S(+), we have that S(+)"S(&� ) is closed.

Now since S(&) and S(&� ) are both contained in S(+) we have that
S(&)"S(&� )=S(&) & [S(+)"S(&� )]. This implies that S(&)"S(&� ) is closed in
S(&).

The proof of (2.1.c) is straightforward.
For the proof of the ``if '' part, we will need the following steps.

Definition 3.1. If (P, N) is a Hahn decomposition of the support of a
measure * # C(Q)* into two closed disjoint sets such that P _ N=S(*), we
say that * admits a Hahn-Garkavi decomposition (H.G.D.) (P, N).

Lemma 3.1. Let G be proximinal, r be a nonnegative real number and
& # G="[0]. Then &+&r+ admits a H.G.D. on S(&+).

Proof. By making use of Garkavi's Theorem, we decompose S(+) into
finitely many clopen disjoint sets S; with ;=(;1 , ..., ;n), ; # [0, 1, &1]n"
[(0, ..., 0)], according to the rule

S;=_ ,
[i: ;i=1]

S(&+
i )&& _ ,

[ j: ;j=&1]

S(&&
j )&>_ .

[k: ;k=0]

S(&k)& .
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Define _;=�n
h=1 ;h&h ; then _; # G= and in S; & BQ we have

+= :
;i=1

&+
i + :

;j=&1

&&
j = :

n

h=1

;h&h=_; .

Note that S(&&r+) & S;=S(&&r_;) & S; .
By (2.1.a), &&r_; # G= admits a H.G.D. of S(&&r_;), (T;

+, T;
& ).

Then (T+
; & S; , T&

; & S;) is a Hahn decomposition for &&r_; on
S(&&r_;) & S; , and from what we have already showed (T+

; & S; ,
T&

; & S;) is a Hahn decomposition for &&r+ on S(&&r+) & S; .
From

S(&&r+)=.
;

[S(&&r+) & S;]

we have that

\.
;

(T+
; & S;), .

;

(T&
; & S;)+

is a H.G.D. for &&r+ on S(&&r+). Then &&r+ has a H.G.D. on
S(&+) & S(&&r+). But on this set & &r+=&+&r+ and hence &+&r+ has
a H.G.D. on S(&+) & S(&&r+). Note that

S(&+)"S(&&r+)=_,
;

(S(&)"S(&&r_;))&& _,
;

(S(&)"S;)&& S(&+).

By (2.1.b), S(&)"S(&&r_;) is closed for every ;; and from the definition of
the S; 's, S(&) & S c

; is a closed subset of S(+), and hence of Q. Thus
S(&)"[S(&&r+) & S;] is closed for every ;, and consequently S(&+)"
S(&&r+) is closed.

Let now (P, N) be a H.G.D. of &+&r+ on S(&+) & S(&&r+). Then
P1=P _ [S(&+)"S(&&r+)] is still a positive set, and it is closed in S(&+).
Thus (P1 , N) is a H.G.D. of &+&r+ on S(&+).

Lemma 3.2. Let G be proximinal. For every & # G= there exists a collec-
tion of sets (Ar)r # Q(2) decreasing with respect to increasing r and such that,
for every r # Q(2), (Ar , S(&+)"Ar) is a H.G.D. for &+&r+ on S(&+).

Proof. From the previous lemma, there exists a collection (Ar)r # Q(2) of
closed sets such that (Ar , S(&+)"Ar) is a H.G.D. for &+&r+ on S(&+). We
shall now show that (Ar)r # Q(2) is decreasing with respect to increasing r.
Let r�s. From Ar & Ac

s /Ar , we have &+(Ar & Ac
s)�r+(Ar & Ac

s), whereas
from Ar & Ac

s /Ac
s it follows &+(Ar & Ac

s)�s+(Ar & Ac
s). Hence r+(Ar & Ac

s)
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�&+(Ar & Ac
s)�s+(Ar & Ac

s) and, from r�s, we have +(Ar & Ac
s)=0. But

&+<<+, thus &+(Ar & Ac
s)=0; since Ar & A c

s is open in S(&+),
Ar & Ac

s=<. Then Ar /As .

The following theorem is known:

Theorem 3.2 [7]. Let &, + be two nonnegative measures on a measurable
space (0, 7), with &<<+. Let (Ar)r # Q(2) be a collection of measurable
subsets of 0, decreasing with respect to increasing r and such that

(i) A0=0,

(ii) (Ar , 0"Ar) is a Hahn decomposition for &&r+,

(iii) limr � � &(Ar)=0.

Then the function f : 0 � [0, +�] defined by f (x)=Sup[r # Q(2) : x # Ar]
is such that

&(E)=|
E

f d+, \E # 7.

As a consequence of this theorem, one can establish the following:

Proposition 3.1. Let &1 , &2 be two nonnegative and non-atomic measures
on BQ , &=(&1 , &2), and let F # BQ be such that &(F )=T # �R(&). If
y=kx+&2(F )&k&1(F ), k>0, is a line supporting R(&) at T, then (F, F c) is
a Hahn decomposition for &2&k&1 .

Theorem 3.3. Let G be proximinal, & # G=. Then there exists a con-
tinuous function f : S(&+) � R such that

&+(E)=|
E

f d+, \E # S(&+) & BQ .

Proof. Let us consider the collection (Ar)r # Q(2) of Lemma 3.2. For r=0
we have &+&r+=&+�0 and thus A0=S(&+). Moreover, if &=�n

i=1 ci&i ,
for r0=max[ |c1|, ..., |cn |] we have &+&r0+�0. Thus As=< for s�r0 ;
namely, limr � � &(Ar)=0.

The collection (Ar)r # Q(2) fulfills the assumptions of Theorem 3.2 with
0=S(&+); hence the function f : S(&+) � R defined in this theorem is a
representative of the density d&+�d+. Observe that f is bounded, since Ar is
empty for r�r0 . We shall prove that f is continuous.

To show first that f is upper semicontinuous, let t # R+
0 be fixed,

(x:): /[ f�t], with x: � x0 . From f (x:)�t, x: � As , \s # Q(2), s>t.
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Note that the sets S(&+)"As are closed, since we have costructed the collec-
tion (Ar)r # Q(2) by H.G.D. Hence x0 � As , \s # Q(2), s>t. Then from the
definition of f we get f (x0)�t.

We shall now prove that f is lower semicontinuous. Let t # R+
0 and let

x0 # [ f �t]: if there existed s� <t with x0 � As� , from the monotonicity of
the collection (Ar)r # Q(2), it would be x0 � Ar \r�s� , whence

f (x0)=Sup[r # Q(2) : x0 # Ar]�s� <t� f (x0),

which is a contradiction. Then x0 # As \s<t, and so [ f �t]/�s<t As .
Since the converse inclusion trivially holds, [ f �t] is closed.

Applying the same technique to &&, we obtain the following:

Corollary 3.1. Let G be proximinal, and let & # G="[0]. Then there
exist two continuous functions f, g: S(+) � R such that

&(E)=|
E

( f & g) d+, \E # S(+) & BQ

|&| (E)=|
E

( f +g) d+, \E # S(+) & BQ .

Proof. Let (S(&+), S(&&)) be the H.G.D. for &. Applying Theorem 3.3
we obtain two continuous functions f� : S(&+) � R, and g� : S(&&) � R such
that &+(E)=�E f� d+, \E # S(&+) & BQ , and &&(E)=�E g� d+, \E # S(&&) &
BQ . Define now f = f� 1S(&+) and g= g� 1S(&&) . Then

0 on S(+)"S(&)

( f & g)(x)={f (x) on S(+) & S(&+)

&g(x) on S(+) & S(&&).

For every E # S(+) & BQ we have

|
E

( f & g) d+=|
E & (S(+) & S(&+))

( f & g) d++|
E & (S(+) & S(&&))

( f & g) d+

+|
E & (S(+)"S(&))

( f & g) d+

=|
E & S(&+)

f� d+&|
E & S(&&)

g� d+=&(E).

Analogously �E ( f +g) d+=|&| (E).
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The continuity of f & g and f + g on S(+) is a trivial consequence of the
closure of S(&+), S(&&), and S(+)"S(&). Note that this latter set is closed
since

S(+)"S(&)=[S(&1) _ } } } _ S(&n)]"S(&)=_.
i=1

S(&i)"S(&)&,

where each S(&i)"S(&) is closed by (2.1.b). To conclude the proof of the ``if ''
part of Theorem 3.1, note now that (1) follows immediately from Corollary
3.1. (2) can be proved in a completely analogous way.

As a consequence of Theorem 3.1 we have

Theorem 3.4. Let G be proximinal. Then there exist a regular non-
negative measure + defined on the Borel _-algebra BQ , and n continuous
functions f1 , ..., fn : S(+) � R such that G= &span[ f1 , ..., fn] (in the sense
that, for every & # G=, there exist :1 , ..., :n # R such that &(E)=�E (:1 f1+
} } } +:n fn) d+, \E # BQ).

4. THE STRUCTURE OF 2-COMPLEMENTED
PROXIMINAL SUBSPACES

Throughout this section G will be a closed subspace of E of codimension
2 and G==span [&1 ,&2] with &1 , &2 non-atomic nonnegative measures on
BQ , S=S(&1) _ S(&2), &=(&1 , &2). We will present a geometric charac-
terization of proximinal subspaces of C(Q), whose annihilator is spanned
by two such measures. We begin with the following lemma:

Lemma 4.1. Let Y=(xY , 0) and P=(0, yP) be such that

xY=max[x: (x, 0) # �R(&)] and yP=max[ y: (0, y) # �R(&)].

Let CY and CP be two clopen subsets of S such that &(CY)=Y and
&(CP)=P. Then CY=S(&1)"S(&2) and CP=S(&2)"S(&1).

Proof. Consider the clopen set CP . Being &1(CP)=0, we have CP &
S(&1)=<. Then CP /S(&2)"S(&1). From this inclusion and from the non-
negativity of &2 we obtain &2(CP)�&2(S(&2)"S(&1)). Let us suppose that
CP , which is closed and hence compact in S(&2), is strictly contained in
S(&2)"S(&1). Then CP _ [S(&1) & S(&2)] is a proper compact subset of S(&2)
and thus, being &2(CP)= yP , from the assumption we have &2(CP)=
&2[S(&2)"S(&1)]. But &2(CP _ [S(&1) & S(&2)])=&2(CP)+&2[S(&2) & S(&1)]=
&2[S(&2)"S(&1)]+&2[S(&1) & S(&2))]=&2(S(&2)), which is a contradiction,
by the definition of carrier. Then CP=S(&2)"S(&1).
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The proof of the other equality is analogous.

Lemma 4.2. Let &� =:&1+;&2 , with (:�;)<0 and S(&� )/{ S. Then �R(&)
contains a segment of slope k=&(:�;).

Proof. Throughout the following, \F # BQ we will denote by RF the
range of & restricted to BF , the Borel _-algebra on F. Let H=S"S(&� ). Then
&2=k&1 on BH , and hence RH is the segment joining the origin with &(H)
whose slope is in fact k. Consider the convex function g: [0, &1(S)] � R
defined as

g(x)=Inf[&2(U): U/S, &1(U)=x].

Set u=Sup[t>0 : there is At with &1(At)=t, &2(At)= g(t) and g$&(t)<k].
As R(&) is closed, there exists A such that &1(A)=u, v2(A)= g(u) and
g$&(u)�k. Since RA is contained in the cone delimited by the x-axis and
the line y= g$&(xA) x, and as &1(A)=u, we get RH & RA=[0], namely, for
every B/H, &(A _ B)=&(A)+&(B). So the set [&(A _ B) : B/H] is a seg-
ment, whose slope is k, and, by convexity, it is obvious that such segment
belongs to the boundary of R(&).

Lemma 4.3. Suppose that for every P # Ext R(&) there exists a clopen
subset C of S such that &(C))=P. Let &� =:&1+;&2 with &(:�;)=k>0, be
such that S(&� )/ { S. Then S(&� ) is a clopen subset of S.

Proof. Without loss of generality we shall prove the lemma for the
measure &~ =&2&k&1 . By the previous lemma and by the central symmetry
of R(&), �R(&) contains two parallel segments of slope k. Let P=(xP , yP)
and P$=(xP$ , yP$), with xP<xP$ , be the endpoints of one of those
segments. Obviously P, P$ # Ext R(&). By assumption there exist two clopen
subsets C1 , C2 of S such that &(C1)=P and &(C2)=P$.

But C1 /C2 : in fact C1"C2 is an open subset of S. As in the proof of the
H.O.B.P. [13, Lemma 3.1] one shows that &(C1)=&(C1 & C2) and thus
&(C1 "C2)=0; hence (&1+&2)(C1"C2)=0. From the properties of the
carrier of a measure, it follows (C1"C2)=<, that is, C1 /C2 .

Let us now show that K=C2 "C1=S"S(&~ ), i.e., that S(&~ ) is a clopen
subset of S. We have &~ (T )=0, \T/K.

Thus for S(&~ )"K (which is closed and hence compact in S(&~ ))
&~ (S(&~ )"K)=&~ (S(&~ ))&&~ (K & S(&~ ))=&~ (S(&~ )).

From the properties of the carriers it follows K & S(&~ )=<, that is
S(&~ )/S"K. Let us suppose that S(&~ )/{ S"K. This implies that
K/{ S"S(&~ ). Then, being |&~ | (S"S(&~ ))=0, it is &~ (J)=0, that is
&2(J)=k&1(J) \J/S"S(&~ ). Since K/{ S"S(&~ ), the length of the segment
of slope k on �R(&), would be greater than that of PP$. This contradicts the
extremality of P$, therefore K=C2"C1=S"S(&~ ).
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We are now able to prove the following:

Theorem 4.1. The following conditions are equivalent:

(i) G is proximinal;
(ii) For every P # Ext(R(&)) there exists a clopen subset C of S such

that &(C)=P.

Proof. Let us prove that (i) O (ii).

Being & non-atomic, R(&) is compact and convex [12]: hence if P=
(xP , yP) # Ext R(&), there exists a set A/S such that P=&(A). For every
A # BQ define the functions

gA : [0, &1(A)] � R, gA(x)=Inf[&2(H): H/A, &1(H)=x],

#A : [0, &1(A))] � R, #A(x)=Sup[&2(H): H/A, &1(H)=x].

When A=S we shall use the symbols g and # simply.
Define �&

R = graph g, and �+
R = graph #. From the geometry of zonoids,

it is known that the following equality holds:

�R(&)=�&
R _ �+

R _ [(&1(S), y), y # [ g(&1(S)), &2(S)]]

_ [(0, y), y # [0, #(0)]].

Then the points P # Ext R(&) such that P{&(S) belong either to �&
R or �+

R .
Assume for instance that P # �&

R , and let us consider the case:
g$&(xP)= g$+(xP)=k. Let P$=(xP$ , yP$)=(&(Ac)). It is known that A and
Ac are two subsets of S forming a Hahn decomposition for the measure
&2&k&1 . By (2.1.a), there exists a H.G.D. for &2&k&1 into two clopen sub-
sets B, C of S(&2&k&1). Let us suppose for example that B is the positive
set and C the negative one of this decomposition. The set D=
S"[S(&2&k&1)] is clopen from condition (2.1.b) and it is of (&2&k&1)-
measure zero. Then B and C are clopen subsets of S. Then, being
(&2&k&1)(D)=0, (B, Bc) is a H.G.D. of &2&k&1 on S. Furthermore &(B),
&(C _ D), belong to �R(&), since B and C _ D satisfy Lemma 5.2 in [14].

We shall now prove that &(Bc)=P. If it were &1(Bc)>xP , then, it would
be (#Bc)$+(0)>k, which contradicts the negativity of Bc with respect to
&2&k&1 . Likewise it cannot be &1(Bc)<xP . Then necessarily &1(Bc)=xP ,
and, from the extremality of P, &2(Bc)= yP .

If g$&(xP)< g$+(xP), it suffices to use the same technique for the measure
&2&k&1 , where k is any real number with g$&(xP)<k< g$+(xP).

Let us now prove that (ii) O (i), by means of Garkavi's Theorem. We
begin by showing that every &� =:&1+;&2 # G="[0] admits a H.G.D. The
case :;=0 is trivial. Thus assume ;{0.
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Consider first the measures &� =:&1+;&2 , with (:�;)<0.
We have two possibilities for S(&� ).

First case: S(&� )=S. Since the measure (1�;) &� =&2+(:�;) &1 has the
same carrier as &� , it suffices to find a H.G.D. for &2+(:�;) &1 (but the
positive set with respect to &2+(:�;) &1 can be the negative one with
respect to &� , and conversely).

Let xP=max[x: (x, 0) # R(&)], xP$=&1(S(&1)). If &(:�;) # [ g$+(xP),
g$&(xP$)] then, being g convex, there exists at least T # Ext R(&) such that
the line y=&(:�;) x supports R(&) at the point T. From the assumption
there exists a clopen set F such that &(F )=T; then, by Proposition 3.1,
(F, F c) is a H.G.D. for &2+(:�;) &1 .

If 0<&(:�;)< g$+(xP), take the clopen sets S(&2)"S(&1) and S(&2) (they
are clopen by the previous lemma), while if g$&(xP)<&(:�;)<+�,
(S(&1)"S(&2), S(&1) is the requested H.G.D.

Second case: S(&� )/{ S. By Lemma 4.2, �R(&) contains two parallel
segments of slope &(:�;). Let P, P$ be the endpoints of the segment
belonging to �&

R , and V, V$ those of the segment belonging to �+
R .

Necessarily either P+V or P+V$ equals &(S): let us suppose that
P+V=&(S). Given that P, V # Ext R(&), by assumption (ii) there exist two
disjoint clopen sets A, Ac such that &(A)=V, &(Ac)=P. Then (A, Ac) is a
H.G.D. for &2+(:�;) &1 on S, and therefore (A & S(&� ), Ac & S(&� )) is a
H.G.D. for &2+(:�;) &1 .

Finally, when (:�;)>0 the measure &� =&2+(:�;) &1 is always non-
negative; then (S(&� ), <) is a H.G.D. for &� in this case.

To prove condition (2.1.b), let &� =:&1+;&2 , &~ =#&1+$&2 . We shall
examine the following cases:

First case: :=#=0. Then S(&� )"S(&~ )=<. Likewise if ;=$=0.

Second case: ;=#=0. Then S(&� )"S(&~ )=S(&1)"S(&2), which is a
clopen set by Lemma 4.1. Likewise if :=$=0.

Third case: :�;<0 and #�$<0. Then we can have

(i) S(&~ )=S,

(ii) S(&� )=S and S(&~ ) {
/

S, and

(iii) S(&� ) {
/

S and S(&~ ) {
/

S.

In case (i) trivially S(&� )"S(&~ )=<. In case (ii), with S(&~ ) being a clopen
subset of S(&� )=S (see Lemma 4.3), it turns out that S(&� )"S(&~ ) is closed
in Q since S(&� )"S(&~ )=S(&� ) & S(&~ )c and S(&~ )c is closed in S(&� ), and conse-
quently in Q. In case (iii), both S(&� ) and S(&~ ) are clopen subsets of S(&� ),
and thus S(&� )"S(&~ ) is closed in Q.
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Fourth case: :�;>0 and #�$>0. Here the carrier of the measures &� , &~
is S ; then, trivially, S(&� )"S(&~ ) is empty.

Fifth case: :�;<0 and #�$>0. In this case we have S(&~ )=S, and
hence S(&� )"S(&~ ) is empty.

Sixth case: :�;>0 and #�$<0. Since S(&� )=S, the only significant
case is when S(&~ )/{ S(&� ). But, by Lemma 4.3, S(&~ ) is a clopen subset of
S(&� ), and hence S(&� )"S(&~ ) is closed.

Seventh case: :, ;{0, and $=0 (likewise when :, ;{0, and #=0). We
have S(&� )"S(&~ )=S(&� )"S(&1)=S(&� ) & S(&1)c=S(&� ) & (S(&2)"S(&1)), which is
closed from the closure of S(&2)"S(&1).

Eighth case: ;=0 and #, ${0 (likewise when :=0 and #, ${0). In
this case, if S(&~ )=S, we have S(&� )"S(&~ )=< while, if S(&~ ){S by Lemma
4.3 S(&~ ) is open in S and hence S(&� )"S(&~ ) is closed.

Condition (2.1.b) is thus completely proved.
We shall prove now that for every &� , &~ # G="[0], &� <<&~ on S(&~ ).
Let us begin by showing that &1<<&2 on S(&2) (likewise it turns out to

be &2<<&1 on S(&1)). Since this is obvious on S(&2)"S(&1), it will suffice to
prove that &1<<&2 on S(&2) & S(&1).

If there existed A/S(&2) & S(&1), such that &2(A)=0 but &1(A)>0,
then, for the set B=A _ [S(&1)"S(&2)] it would be &2(B)=&2(A)+
&2(S(&1)"S(&2))=0, while

&1(B)=&1(A)+&1(S(&1)"S(&2))>&1(S(&1)"S(&2)),

which is a contradiction by Lemma 4.1. Then &1<<&2 on S(&2). From this
fact one can easily deduce that every &� =:&1+;&2 with (:, ;){(0, 0), is
absolutely continuous with respect to &~ =#&2 on S(&~ ) (likewise one can
obtain &� <<&~ =$&1 on S(&1)). Consider now &� =:&1+;&2 , (:, ;){(0, 0)
and &~ =#&1+$&2 , ${0, &(#�$)=\>0. Let H/S(&~ ) be such that
|&~ | (H)=0. We begin by supposing that �R(&) contains no segments of
slope \. Then, since the range of & on H is the segment joining the origin
and the point &(H), if it were &(H){0, proceeding as in Lemma 4.2, we
would obtain a linear piece of slope \ on the boundary of R(&). Then
necessarily &(H)=0, whence |&� | (H)=0, that is &� <<&~ on S(&~ ).

If on the contrary �R(&) contains a segment of slope \, by hypothesis
there exist two clopen subsets H1 , H2 of S whose measures are the
endpoints of the segment itself, with H1 /H2 , and S(&~ )=S"H3 , where
H3=H2"H1 . If it were &1(H)>0, then the range of the restriction of &~
to H would be a segment of slope \. Since H & H3=<, we have
H _ H3 #{H3 , and hence the range of the restriction of &~ to H _ H3 would
be a segment of slope \, with length greater than that of the segment

89PROXIMINAL SUBSPACES OF C(Q)



0&(H3). Therefore �R(&) would contain a segment of slope \, with length
greater than that of the segment &(H1)&(H2), which contradicts the
extremality of &(H2). Then necessarily &1(H)=0 (and hence &2(H)=0),
whence &� <<&~ on S(&~ ). Obviously, if &~ =#&1+$&2 , with #�$<0, then &� <<&~
on S(&~ ). The cases we have examined are sufficient to completely prove
condition (2.1.c), and to conclude the proof of the theorem.

We are now able to show that the converse of Theorem 3.4 does not
hold.

Example 4.1. Let us consider the measure space ([0, 1], B, *) where B

is the Borel _-algebra on [0, 1] and * is the Lebesgue measure. Let
f (x)=x, and define the measure +(E)=�E x d*. Then clearly S(+)=
S(*)=[0, 1]. Moreover * and + are non-atomic, hence R(*, +) is compact
and convex. Set G=(span[*, +])=. Obviously, since S(+) _ S(*)=[0, 1] is
connected, from Theorem 4.1, G is not proximinal.

However, the map 1 and the function f (x)=x, are such that
span[*, +]=[:*+;+ : :, ; # R]=T(span[1, f ]), where T: h � � h d*.
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